Abstract
The paper outlines a methodology for analyzing daily stock returns that relinquishes the assumption of global stationarity. Giving up this common working hypothesis reflects our belief that fundamental features of the financial markets are continuously and significantly changing. Our approach approximates the nonstationary data locally by stationary models. The methodology is applied to the S&P 500 series of returns covering a period of over seventy years of market activity. We find most of the dynamics of this time series to be concentrated in shifts of the unconditional variance. The forecasts based on our nonstationary unconditional modeling were found to be superior to those obtained in a stationary long-memory framework and to those based on a stationary Garch(1, 1) data-generating process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.