Abstract

The top quark, being the heaviest particle of the Standard Model, is a prime candidate of where physics beyond the SM might currently hide before our eyes. There are many natural extensions of the SM that rely on top compositeness, and the top quark could follow the paradigm of revealing a substructure when it is probed at high enough momentum transfers. Observing high $p_T$ top final states naturally drives us towards boosted hadronic analyses that can be tackled efficiently with jet substructure techniques. In this paper we analyse the prospects of constraining exemplary non-standard QCD top interactions in this kinematical regime. We correctly include QCD modifications to additional gluon emission off the boosted top quark and keep track of the modified top tagging efficiencies. We conclude that non-standard top QCD interactions can be formidably constrained at the LHC 14 TeV. Experimental systematic uncertainties are a major obstacle of the described measurement. Unless significantly improved for the 14 TeV run, they will saturate the direct sensitivity to non-resonant BSM top physics at luminosities of around 100/fb.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.