Abstract

Nonstandard Lagrangians are generating functions of different equations of motion. They have gained increasing importance in many different fields. In fact, nonstandard Lagrangians date back to 1978, when Arnold entitled them “non-natural” in his classic book, Mathematical Methods of Classical Mechanics (Springer, New York. 1978). In applied mathematics, most dynamical equations can be obtained by using generating Lagrangian functions (e.g., power-law and exponential Lagrangians), which has been shown by mathematicians, who have also demonstrated that there is an infinite number of such functions. Besides this interesting field, the topic of fractional calculus of variations has gained growing importance because of its wide application in different fields of science. In this paper, we generalize the fractional actionlike variational approach for the case of a nonstandard exponential Lagrangian. To appreciate this new approach, we explore some of its main consequences in Einstein’s general relativity. Some results are revealed and discussed accordingly mainly the transition from general relativity to complex relativity and emergence of a discrete gravitational coupling constant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.