Abstract

The aim of this work is to present numerical treatments to a complex order fractional nonlinear one-dimensional problem of Burgers’ equations. A new parameter σt is presented in order to be consistent with the physical model problem. This parameter characterizes the existence of fractional structures in the equations. A relation between the parameter σt and the time derivative complex order is derived. An unconditionally stable numerical scheme using a kind of weighted average nonstandard finite-difference discretization is presented. Stability analysis of this method is studied. Numerical simulations are given to confirm the reliability of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.