Abstract

<p style='text-indent:20px;'>This paper aims to solve numerically the linearized Korteweg-de Vries equation. We begin by deriving suitable boundary conditions then approximate them using finite difference method. The methodology of derivation, used in this paper, yields to Non-Standard Boundary Conditions (NSBC) that perfectly absorb wave reflections at the boundary. In addition, these NSBC are exact and local in time and space for non necessarily supported initial data and source terms. We finish with numerical examples that show the absorbing quality of these boundary conditions. Further comparisons are made using standard boundary conditions like, Dirichlet, Neumann and a variant of absorbing boundary conditions called discrete artificial ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.