Abstract

We introduce a nonstandard approach to the study of ordered setsX based on a classification of the elements of the ordered set *X into three types, ‘upward’, ‘downward’, and ‘lateral’, which may be thought of dynamically as arising from the possibilities of upward, downward, and lateral motion withinX. Initial applications include the characterization thatX has no infinite diverse subset iff *X has no lateral elements, a result subsequently exploited in work on the interval topology and order-compatibility, where we give a nonstandard proof of Naito's result that ifX has no infinite diverse subset, it has a unique order-compatible topology. We also describe how the completion of a nonempty linearly ordered setX may be obtained as a quotient of *X.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.