Abstract
Two-dimensional simulations of a Type II and a Type Ib-like supernova explosion are presented that encompass shock revival by neutrino heating, neutrino-driven convection, explosive nucleosynthesis, the growth of Rayleigh-Taylor instabilities, and the propagation of newly formed metal clumps through the exploding star. In both cases we find very high Ni56 velocities of 17000 km/s shortly after shock-revival, and a complete fragmentation of the progenitor's metal core within the first few minutes after core bounce, due to the growth of Rayleigh-Taylor instabilities at the Si/O and (C+O)/He composition interfaces. This leads to the formation of high-velocity, metal-rich clumps which eventually decouple from the flow and move ballistically through the ejecta. Maximum final metal velocities of 3500-5500 km/s and 1200 km/s are obtained for the Type Ib model and the Type II model, respectively. The low maximum metal velocities in the Type II model, which are significantly smaller than those observed in SN 1987A, are due to the massive hydrogen envelope of the progenitor. The envelope forces the supernova shock to decelerate strongly, leaving behind a reverse shock below the He/H interface, which interacts with the clumps and slows them down significantly. This reverse shock is absent in the Type Ib-like model. The latter is in fairly good agreement with observations of Type Ib supernovae. In addition, in this case the pattern of clump formation in the ejecta is correlated with the convective pattern prevailing during the shock-revival phase. This might be used to deduce observational constraints for the dynamics during this early phase of the evolution, and the role of neutrino heating in initiating the explosion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.