Abstract

In order to better understand the contribution of bubble collapse to stone comminution in shockwave lithotripsy, the shock-induced and Rayleigh collapse of a spherical air bubble is investigated using numerical simulations, and the free-field collapse of a cavitation bubble is studied experimentally. In shock-induced collapse near a wall, it is found that the presence of the bubble greatly amplifies the pressure recorded at the stone surface; the functional dependence of the wall pressure on the initial standoff distance and the amplitude are presented. In Rayleigh collapse near a solid surface, the proximity of the wall retards the flow and leads to a more prominent jet. Experiments show that re-entrant jets form in the collapse of cavitation bubbles excited by lithotripter shockwaves in a fashion comparable to previous studies of collapse near a solid surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call