Abstract

Quantitative understanding of the principles regulating nucleosome occupancy on a genome-wide level is a central issue in eukaryotic genomics. Here, we address this question using budding yeast, Saccharomyces cerevisiae, as a model organism. We perform a genome-wide computational analysis of the nonspecific transcription factor (TF)-DNA binding free-energy landscape and compare this landscape with experimentally determined nucleosome-binding preferences. We show that DNA regions with enhanced nonspecific TF-DNA binding are statistically significantly depleted of nucleosomes. We suggest therefore that the competition between TFs with histones for nonspecific binding to genomic sequences might be an important mechanism influencing nucleosome-binding preferences in vivo. We also predict that poly(dA:dT) and poly(dC:dG) tracts represent genomic elements with the strongest propensity for nonspecific TF-DNA binding, thus allowing TFs to outcompete nucleosomes at these elements. Our results suggest that nonspecific TF-DNA binding might provide a barrier for statistical positioning of nucleosomes throughout the yeast genome. We predict that the strength of this barrier increases with the concentration of DNA binding proteins in a cell. We discuss the connection of the proposed mechanism with the recently discovered pathway of active nucleosome reconstitution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.