Abstract

Vaccinia virus-induced peritoneal exudate cells (PEC) in the hamster were characterized with regard to cell type(s), target specificity, and expression of the T cell antigen, Thy 1.2 homologue. Hamsters were immunized intraperitoneally with vaccinia virus and cytotoxicity was measured against 51Cr-labeled targets in a 16-hr assay. PEC collected 4 days after immunization were cytotoxic for both baby hamster kidney cells (BHK) and herpes virus-infected BHK (BHKHSV). Both the nonadherent (lymphocyte) and adherent macrophage (MP) fractions of PEC were cytotoxic. Treatment of cells with a monoclonal anti-murine Thy 1.2 antibody (alpha-Thy 1.2) known to detect a Thy 1.2 homologue on hamster T cells, removed all of the cytotoxicity in both PEC fractions, whereas, cytotoxic spleen cells from the same animals were resistant to antibody treatment. Similarly, the cytotoxic cells in PEC induced by bacillus Calmette-Guérin were exclusively of the Thy 1.2 homologue-positive phenotype. Target specificities of Thy 1.2+ PEC and Thy 1.2- spleen cells were similar as evidenced by comparable activity against hamster BHK and BHKHSV targets and murine SV3T3 and YAC-1 targets. Previous studies have attributed the cytotoxicity of the adherent PEC to MP. However, as determined by immunofluorescence and morphological studies, treatments that enriched for MP decreased cytotoxic activity, whereas, procedures that enriched for lymphocytes enhanced cytotoxic activity suggesting that all cytotoxicity in PEC is mediated by a non-specific Thy 1.2 homologue positive lymphocyte (Thy 1.2+ CL). Thus our data support the conclusion that intraperitoneal inoculation of hamsters with vaccinia induces two distinctly compartmentalized phenotypes with similar cytotoxic characteristics--the Thy 1.2+ CL and the Thy 1.2 homologue-negative natural killer cell (NK) or NK-like cell in the peritoneum and in the spleen, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.