Abstract

This paper proposes a non-smooth predictive control approach for mechanical transmission systems described by dynamic models with preceded backlash-like hysteresis. In this type of system, the work platform is driven by a DC motor through a gearbox. The work platform is represented by a linear dynamic sub-model connected in series with a backlash-like hysteresis inherent in gearbox. Here, backlash-like hysteresis is modeled as a non-smooth function with multi-valued mapping. In this case, the conventional model predictive control for such system cannot be implemented directly since the gradients of the control objective function with respect to control variables do not exist at non-smooth points. In order to solve this problem, a non-smooth receding horizon strategy is proposed. Moreover, the stability of predictive control of such non-smooth dynamic systems is analyzed. Finally, a numerical example and a simulation study on a mechanical transmission system are presented for validating the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call