Abstract

The non-smooth modelling of electrical systems, which allows for idealised switching components, is described using the flux approach. The formulations and assumptions used for non-smooth mechanical systems are adopted for electrical systems using the position–flux analogy. For the most important non-smooth electrical elements, like diodes and switches, set-valued branch relations are formulated and related to analogous mechanical elements. With the set-valued branch relations, the dynamics of electrical circuits are described as measure differential inclusions. For the numerical solution, the measure differential inclusions are formulated as a measure complementarity system and discretised with a difference scheme, known in mechanics as time-stepping. For every time-step a linear complementarity problem is obtained. Using the example of the DC–DC buck converter, the formulation of the measure differential inclusions, state reduction and their numerical solution using the time-stepping method is shown for the flux approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.