Abstract

The study of the differential-algebraic boundary value problems was established in the papers of K. Weierstrass, M.M. Lusin and F.R. Gantmacher. Works of S. Campbell, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, M.O. Perestyuk, V.P. Yakovets, O.A. Boi- chuk, A. Ilchmann and T. Reis are devoted to the systematic study of differential-algebraic boundary value problems. At the same time, the study of differential-algebraic boundary-value problems is closely related to the study of linear boundary-value problems for ordinary di- fferential equations, initiated in the works of A. Poincare, A.M. Lyapunov, M.M. Krylov, N.N. Bogolyubov, I.G. Malkin, A.D. Myshkis, E.A. Grebenikov, Yu.A. Ryabov, Yu.A. Mitropolsky, I.T. Kiguradze, A.M. Samoilenko, M.O. Perestyuk and O.A. Boichuk. The study of the linear differential-algebraic boundary value problems is connected with numerous applications of corresponding mathematical models in the theory of nonlinear osci- llations, mechanics, biology, radio engineering, the theory of the motion stability. Thus, the actual problem is the transfer of the results obtained in the articles and monographs of S. Campbell, A.M. Samoilenko and O.A. Boichuk on the linear boundary value problems for the integro-differential boundary value problem not solved with respect to the derivative, in parti- cular, finding the necessary and sufficient conditions of the existence of the desired solutions of the linear integro-differential boundary value problem not solved with respect to the derivative. In this article we found the conditions of the existence and constructive scheme for finding the solutions of the linear Noetherian integro-differential boundary value problem not solved with respect to the derivative. The proposed scheme of the research of the nonlinear Noetherian integro-differential boundary value problem not solved with respect to the derivative in the critical case in this article can be transferred to the seminonlinear integro-differential boundary value problem not solved with respect to the derivative.

Highlights

  • Çíàéäåíî êîíñòðóêòèâíi óìîâè iñíóâàííÿ ðîçâ'ÿçêiâ ëiíiéíîíåâèðîäæåíîiíòåãðàëüíîäèôåðåíöiàëüíîêðàéîâîçàäà÷i, íå ðîçâ'ÿçàíîâiäíîñíî ïîõiäíî.

  • Íåâèðîäæåíi ëiíiéíi iíòåãðàëüíî-äèôåðåíöiàëüíi êðàéîâi çàäà÷i ïðè öüîìó r-ïàðàìåòðè÷íà ñiì'ÿ ðîçâ'ÿçêiâ ïîðîäæóþ÷îçàäà÷i (3) y0(t, cr) = Xr(t)cr + G[f (s); α](t), cr ∈ Rr çîáðàæó1òüñÿ çà äîïîìîãîþ óçàãàëüíåíîãî îïåðàòîðà Ãðiíà

  • K f (s) (t) := X(t) X−1(s)F0(s, ν0(s)) ds a îïåðàòîð Ãðiíà çàäà÷i Êîøi y0(a) = c äëÿ ïîðîäæóþ÷îñèñòåìè (3), Xr(t) := X(t)PQr ; ìàòðèöÿ PQr ∈ Rp×r, óòâîðåíà ç r ëiíiéíî-íåçàëåæíèõ ñòîâïöiâ ìàòðèöi-îðòîïðîåêòîðà

Read more

Summary

Introduction

Çíàéäåíî êîíñòðóêòèâíi óìîâè iñíóâàííÿ ðîçâ'ÿçêiâ ëiíiéíîíåâèðîäæåíîiíòåãðàëüíîäèôåðåíöiàëüíîêðàéîâîçàäà÷i, íå ðîçâ'ÿçàíîâiäíîñíî ïîõiäíî. Íåâèðîäæåíi ëiíiéíi iíòåãðàëüíî-äèôåðåíöiàëüíi êðàéîâi çàäà÷i ïðè öüîìó r-ïàðàìåòðè÷íà ñiì'ÿ ðîçâ'ÿçêiâ ïîðîäæóþ÷îçàäà÷i (3) y0(t, cr) = Xr(t)cr + G[f (s); α](t), cr ∈ Rr çîáðàæó1òüñÿ çà äîïîìîãîþ óçàãàëüíåíîãî îïåðàòîðà Ãðiíà K f (s) (t) := X(t) X−1(s)F0(s, ν0(s)) ds a îïåðàòîð Ãðiíà çàäà÷i Êîøi y0(a) = c äëÿ ïîðîäæóþ÷îñèñòåìè (3), Xr(t) := X(t)PQr ; ìàòðèöÿ PQr ∈ Rp×r, óòâîðåíà ç r ëiíiéíî-íåçàëåæíèõ ñòîâïöiâ ìàòðèöi-îðòîïðîåêòîðà

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call