Abstract
We study the nonsingular black hole in Anti de-Sitter background taking the negative cosmological constant as the pressure of the system. We investigate the horizon structure, and find the critical values $m_0$ and $\tilde{k}_0$, such that $m>m_0$ (or $\tilde{k}<\tilde{k}_0$) corresponds to a black solution with two horizons, namely the Cauchy horizon $x_-$ and the event horizon $x_+$. For $m=m_0$ (or $\tilde{k}=\tilde{k}_0$), there exist an extremal black hole with degenerate horizon $x_0=x_{\pm}$ and for $m<m_0$ (or $\tilde{k}>\tilde{k}_0$), no black hole solution exists. In turn, we calculate the thermodynamical properties and by observing the behaviour of Gibb's free energy and specific heat, we find that this black hole solution exhibits first order (small to large black hole) and second order phase transition. Further, we study the $P-V$ criticality of system and then calculate the critical exponents showing that they are the same as those of the Van der Waals fluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.