Abstract

At environmentally relevant concentrations in soils and sediments, chlorpyrifos, a hydrophobic organic insecticide, showed strong adsorption that correlated significantly with organic matter content. Chlorpyrifos desorption followed a nonsingular falling desorption isotherm that was estimated using a memory-dependent mathematical model. Desorption of chlorpyrifos was biphasic in nature, with a labile and nonlabile component. The labile component comprised 18-28% of the original solid-phase concentration, and the residue was predicted to slowly partition to the aqueous phase, implying long-term desorption from contaminated soils or sediments. The newly proposed mechanism to explain sorption/desorption hysteresis and biphasic desorption is the unfavorable thermodynamic energy landscape arising from limitation of diffusivity of water molecules through the strongly hydrophobic domain of soils and sediments. Modeling results suggest that contaminated soils and sediments could be secondary long-term sources of pollution. Long-term desorption may explain the detection of chlorpyrifos and other hydrophobic organic compounds in aquatic systems far from application sites, an observation that contradicts conventional transport predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.