Abstract

AbstractThe effects of nanoparticle shape are first introduced to study the nonsimilar solutions of stagnation point boundary layer flow of water–copper nanofluid saturated in a porous medium. Two cases of solid matrix of porous medium, including glass balls and aluminum foam, are considered. By using a new empirical correlation for the heat capacitance, thermal conductivity, and thermal diffusivity of the nanofluid saturated in a porous medium, the governing equations of the problem are constructed and reduced by dimensionless variables and nonsimilar transformations, and the homotopy analysis method is adopted to solve the partial differential equations. The results indicate that the heat transfer is significantly enhanced with the increase of permeability of the porous medium on the surface of the stagnation point boundary layer flow. In addition, it is found that the empirical shape of the nanoparticle has an impact on the heat transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.