Abstract
AbstractThis nonsimilar convection study is about the flow of Carreau–Yasuda (CY) nanofluid model above a vertically extendible surface. Convection in a fluid‐filled permeable medium has given due consideration because of its relevance in a variety of applications, including insulation, relocation of water from geothermal reservoirs, storage of nuclear waste, renewable energy, mechanical engineering, and enhanced oil reservoir recovery. By virtue of linear stretching and buoyancy effects, flow in a stationary fluid is induced along a vertical porous surface. In x‐momentum equation, linear buoyancy in the context of temperature and concentration is taken into consideration. Modeling of energy expression is done in the presence of Dufour and Soret influences. Governing differential system describing convection equations is changed into nonlinear partial differential system (PDE) by implementing applicable nonsimilar transformations. By making use of analytical local nonsimilarity (LNS) technique and bvp4c (numerical finite difference‐based algorithm), the transformed dimensionless nonsimilar structure is simulated numerically. At the end, the alteration of important nondimensional numbers is studied on transport quantities such as temperature, concentration and velocity field. The repercussions of relevant parameters on drag coefficient, Nusselt number and Sherwood number have been tabulated. Numerical simulations of nonsimilar model suggests that the velocity profile reduces due to rise in the values of Weissenberg number, porosity and suction parameter. The temperature profile is increased in comparison with the higher estimates, Eckert, and Dufour numbers. Because of larger values of Soret and Prandtl number, an increase in concentration profile is seen. Friction coefficient and Nusselt number increases with respect to higher estimations of porosity parameter, Weissenberg number and Prandtl number respectively, whereas they decrease against Dufour and Eckert variations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.