Abstract

Scientists have studied fluid flow over a stretching sheet to explore its potential applications in industries. This study investigates the exponential stretching flow of a bioconvective magnetohydrodynamic (MHD) hybrid nanofluid in porous medium taking into consideration thermal radiations, heat generation, chemical reaction, porosity, and dissipation. Moreover, microorganisms are present in the fluid, so the fluid is more stable, which is crucial in biotechnology, biomicrosystems, and bio-nano coolant systems. Silver and titanium dioxide in a water-based medium are the prototypical nanoparticles. The present study involves a transformation of the governing system into a set of dimensionless, coupled and nonlinear partial differential equations (PDEs) using nonsimilar techniques. The local non-similarity (LNS) technique is used to truncate these equations to ordinary differential equations (ODEs). This technique is also used to estimate transformed equations numerically until the second level of truncation takes place via the bvp4c algorithm, which is a built-in MATLAB solver. Furthermore, tables are provided that presents the drag coefficients, Nusselt numbers, Sherwood numbers, and densities of motile microorganisms. Results show a negative correlation between the velocity and the magnetic field parameter as well as the porosity parameter, as evidenced by a decrease in velocity corresponds to rises in these parameters. The temperature distribution exhibits a positive correlation with the rising values of both radiation parameter and Eckert number. The concentration profiles also exhibit a negative correlation with the increasing values of Lewis and bioconvection Lewis number, chemical reaction parameter, Peclet number and the differences in microbial concentration. This study will improve the future research on hybrid nanofluid regarding industrial applications. There haven't been any previous publications that have investigated the use of this model with the local non-similarity method. The main objective of this article is to enhance the heat transfer performance in a hybrid nanofluid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.