Abstract

We investigate the nonsequential double ionization (NSDI) process of an atom in IR+XUV two-color intense laser fields, where the photon energy of the XUV laser is higher than the atomic ionization threshold. By using the frequency-domain theory, we consider the NSDI as a process caused by the collision-ionization mechanism and obtain the NSDI spectrum that presents a multiplateau structure. With the help of channel analysis, we find that the height of a plateau in the NSDI spectrum is determined by the number of XUV photons absorbed by the electrons. Furthermore, to explain the interference structure in the NSDI spectrum, we also compare the contributions of forward and backward collisions to the NSDI probability. We find that the forward collision dominates the contributions to the NSDI when two electrons are ejected along the same direction and both forward and backward collisions make a comparable contribution to NSDI when the two electrons are ejected along opposite directions. By applying the saddle-point approximation, we obtain an energy-circle formula, which may illustrate the formation of the NSDI spectrum structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call