Abstract

Nonsense-mediated mRNA decay (NMD) is a mechanism by which cells recognize and degrade mRNAs that prematurely terminate translation. To date, the polarity and enzymology of NMD in mammalian cells is unknown. We show here that downregulating the Dcp2 decapping protein or the PM/Scl100 component of the exosome (1) significantly increases the abundance of steady-state nonsense-containing but not nonsense-free mRNAs, and (2) significantly slows the decay rate of transiently induced nonsense-containing but not nonsense-free mRNA. Downregulating poly(A) ribonuclease (PARN) also increases the abundance of nonsense-containing mRNAs. Furthermore, NMD factors Upf1, Upf2, and Upf3X coimmunopurify with the decapping enzyme Dcp2, the putative 5′→3′ exonuclease Rat1, the proven 5′→3′ exonuclease Xrn1, exosomal components PM/Scl100, Rrp4, and Rrp41, and PARN. From these and other data, we conclude that NMD in mammalian cells degrades mRNAs from both 5′ and 3′ ends by recruiting decapping and 5′→3′ exonuclease activities as well as deadenylating and 3′→5′ exonuclease activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.