Abstract

We show that unrolled quantum groups at odd roots of unity give rise to relative modular categories. These are the main building blocks for the construction of (1+1+1)–TQFTs extending CGP invariants, which are nonsemisimple quantum invariants of closed 3–manifolds decorated with ribbon graphs and cohomology classes. When we consider the zero cohomology class, these quantum invariants are shown to coincide with the renormalized Hennings invariants coming from the corresponding small quantum groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.