Abstract

Increased matrix metalloproteinase (MMP) activity has been implicated in the pathogenesis of colorectal anastomotic leakage. Tumor necrosis factor-α (TNF-α) induces MMPs and may influence anastomosis repair. We assessed the efficacies of the nonselective hydroxamate MMP inhibitor GM6001, the selective hydroxamate MMP inhibitor AG3340 and a TNF-α antagonist with respect to anastomotic breaking strength of left-sided colon anastomoses in male Sprague-Dawley rats. Systemic GM6001 treatment effectively blocked MMP activity and maintained the initial breaking strength day 0 of the anastomoses when administered subcutaneously as daily depositions (100 mg/kg) or continuously (10 mg/kg/day). In contrast, the anastomotic biomechanic strength was lowered by 55% (p < 0.001) in vehicle-treated rats on postoperative day 3. GM6001 treatment increased breaking strength by 88% (p < 0.0005) compared with vehicle-treated rats day 3 and reduced (p = 0.003) the occurrence of spontaneous anastomotic dehiscence. Histologically, the anastomotic wound was narrower (p < 0.05) in the longitudinal direction in GM6001-treated animals whereas GM6001 had no significant effect on inflammatory cell infiltration or epithelialization. AG3340 (10 mg/kg) increased (p < 0.012) breaking strength by 47% compared with vehicle on day 3 but did not significantly prevent the reduction of the initial breaking strength on day 0. Although the increased TNF-α levels in the wound were attenuated, the anastomotic breaking strength was not improved (p = 0.62) by the TNF-α (10 mg/kg) inhibitor given systemically. Pharmacological nonselective MMP inhibition ought to be explored as a prophylactic regimen to reduce anastomotic complications following colorectal resection. The involvement of TNF-α was insignificant in anastomotic wound healing in an experimental model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.