Abstract

The human mu-opioid receptor was expressed in Saccharomyces cerevisiae. Binding of [3H]diprenorphine to yeast spheroplasts was specific and saturable (Kd = 1 nm, Bmax = 0.2-1 pmol x mg-1 of membrane proteins). Inhibition of [3H]diprenorphine binding by antagonists and agonists with varying opioid selectivities (mu, delta and kappa) occurred with the same order of potency as in mammalian tissues. Affinities of antagonists were the same with yeast spheroplasts as in reference tissues whereas those of agonists, except etorphine and buprenorphine, were 10-fold to 100-fold lower. Addition of heterotrimeric Gi,o-proteins purified from bovine brain shifted the mu-opioid receptor into a high-affinity state for agonists. Using individually purified Galpha-subunits re-associated with betagamma-dimers, we showed that alphao1, alphao2, alphai1, alphai2 and alphai3 reconstituted high-affinity agonist binding with equal efficiency. This suggests that the structural determinants of the mu-opioid receptor responsible for G-protein coupling are not able to confer a high degree of specificity towards any member of the Gi,o family. The selective effects of opioid observed in specialized tissues upon opioid stimulation may be a result of regulation of G-protein activity by cell-specific factors which should conveniently be analysed using the reconstitution assay described here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.