Abstract

Critical resolved shear stresses are studied by means of atomistic simulations for dissociated screw dislocation with Burgers vector 1/3[112¯0] in magnesium. Deviation from Schmid law is demonstrated for dislocation glide on basal and prismatic planes. It was shown that all stress components have influence on the critical resolved shear stress. The non-Schmid behavior is caused by changes of dislocation core width due to acting of non-glide stress components. In atomistic simulations, the critical resolved shear stress varies in the range of 0.2–6.7 MPa for basal slip and 25–55 MPa for prismatic slip depending on values of non-glide stress components. It is expected that such behavior can be partially responsible for scattering of experimental data for yield stress in magnesium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.