Abstract
We propose new algorithms for accurate nonrigid motion tracking. Given an initial model representing general knowledge of the object, a set of sparse correspondences, and incomplete or missing information about geometry or material properties, we can recover dense motion vectors using finite element models. The method is based on the iterative analysis of the differences between the actual and predicted behaviors. Unknown parameters are recovered using an iterative descent search for the best nonlinear finite element model that approximates nonrigid motion of the given object. During this search process, we not only estimate material properties, but also infer dense point correspondences from our initial set of sparse correspondences. Thus, during tracking, the model is refined which, in turn, improves tracking quality. Experimental results demonstrate the success of the proposed algorithm. Our work demonstrates the possibility of accurate quantitative analysis of nonrigid motion in range image sequences with objects consisting of multiple materials and 3D volumes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.