Abstract

In this article, we consider the following problem \[ \begin{cases} (-\Delta)^s u = \alpha u^+ - \beta u^{-} + f(u) + h &\textrm{in $\Omega$}, \\ u = 0 &\textrm{on $\mathbb{R}^n \setminus \Omega$}, \end{cases} \] where $\Omega \subset \mathbb{R}^n$ is a bounded domain with Lipschitz boundary, $n \gt 2s$, $0 \lt s \lt 1$, $(\alpha,\beta) \in \mathbb{R}^2$, $f \colon \mathbb{R} \to \mathbb{R}$ is a bounded and continuous function and $h \in L^2(\Omega)$. We prove the existence results in two cases: first, the nonresonance case where $(\alpha,\beta)$ is not an element of the Fučik spectrum. Second, the resonance case where $(\alpha,\beta)$ is an element of the Fučik spectrum. Our existence results follows as an application of the saddle point theorem. It extends some results, well known for Laplace operator, to the nonlocal operator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.