Abstract

Modern society relies on an increasing number of minerals and metals, meaning that over time production of these commodities has significantly increased, especially within the last fifty years. However, metals and minerals are dominantly produced from ore or mineral deposits that are inherently non-renewable as the geological processes that form these resources (and if necessary exhume them to nearer surface environments where they can be exploited) occur at much slower rates (often over thousands or millions of years) than they are being consumed. This at a basic level indicates that at some point we will “run out” of these non-renewable resources. Although this may be true on a very long timescale, this simple view does not take into account a number of different factors, such as changes in the types, sizes, and grades of mineral deposits that are being exploited. Past changes in the mineral and mining sectors have led to a global increase in mineral and metal production throughout the 20th and 21st centuries that has been (more than) matched by an increase in global mineral and metal resources and reserves. This increase in the amount of material available for exploitation has reflected the decreasing cost of mining and energy, the development of new mining and mineral processing technologies, continued exploration success that has led to the discovery of new resources and reserves, and increasing demand, which in real terms has increased the prices of the majority of commodities. However, the potential lifespan of these historic patterns remains unclear, especially given that mineral resources are finite and other aspects that influence metal and mineral production, such as energy costs and environmental and social issues, are becoming increasingly important. This has led to recent concerns focused on a variety of metals and minerals considered to be at potential supply risk, including base metals such as zinc as well as a the so-called critical metals; metals that are associated with supply risk as a result of their concentration of supply, political instability in source countries, or production (and hence reliance) as by-products to primary metals such as Cu or Zn. These risks are compounded by the fact that these critical metals and minerals are essential for numerous often advanced technologies as well as defense and energy production requirements. This review focuses on the key considerations in estimating metal and mineral resources, aspects that need to be considered when estimating current resources and reserves and determining whether we can meet current and future demand. The dynamic nature of global metal and mineral resources means that an in-depth analysis of these data is not within the scope of this review, although the references provided form a comprehensive bibliography for this topic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call