Abstract
We are concerned in this paper with the non-relativistic global limits of the entropy solutions to the Cauchy problem of 3 × 3 system of relativistic Euler equations modeling the conservation of baryon numbers, momentum, and energy respectively. Based on the detailed geometric properties of nonlinear wave curves in the phase space and the Glimm’s method, we obtain, for the isothermal flow, the convergence of the entropy solutions to the solutions of the corresponding classical non-relativistic Euler equations as the speed of light c → +∞.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.