Abstract
We give a simple, short, and easy proof to the Masaoka theorem that if Dirichlet finiteness and boundedness for harmonic functions on a Riemann surface coincide with each other, then the dimension of the linear space of Dirichlet finite harmonic functions on the Riemann surface and the dimension of the linear space of bounded harmonic functions on the Riemann surface are finite and identical. The essence of our proof lies in the observation that the former of the above two Banach spaces is reflexive while the latter is not unless it is of finite dimension.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Japan Academy, Series A, Mathematical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.