Abstract

The chain length of bacterial lipopolysaccharide O antigens is regulated to give a modal distribution that is critical for pathogenesis. This paper describes the process of chain length determination in the ATP-binding cassette (ABC) transporter-dependent pathway, a pathway that is widespread among Gram-negative bacteria. Escherichia coli O8 and O9/O9a polymannans are synthesized in the cytoplasm, and an ABC transporter exports the nascent polymer across the inner membrane prior to completion of the LPS molecule. The polymannan O antigens have nonreducing terminal methyl groups. The 3-O-methyl group in serotype O8 is transferred from S-adenosylmethionine by the WbdD(O8) enzyme, and this modification terminates polymerization. Methyl groups are added to the O9a polymannan in a reaction dependent on preceding phosphorylation. The bifunctional WbdD(O9a) catalyzes both reactions, but only the kinase activity controls chain length. Chain termination occurs in a mutant lacking the ABC transporter, indicating that it precedes export. An E. coli wbdD(O9a) mutant accumulated O9a polymannan in the cytoplasm, indicating that WbdD activity coordinates polymannan chain termination with export across the inner membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.