Abstract

We consider the problem of repeatedly evaluating the same (computationally expensive) query to a database that is being updated between successive query requests. In this situation, it should be possible to use the difference between successive database states and the answer to the query in one state to reduce the cost of evaluating the query in the next state. We use nonrecursive Datalog (which are unions of conjunctive queries) to compute the differences, and call this process “incremental query evaluation using conjunctive queries”. After formalizing the notion of incremental query evaluation using conjunctive queries, we give an algorithm that constructs, for each regular chain query (including transitive closure as a special case), a nonrecursive Datalog program to compute the difference between the answer after an update and the answer before the update. We then extend this result to weakly regular queries, which are regular chain programs augmented with conjunctive queries having the so-called Cartesian-closed increment property, and to the case of unbounded-set insertions where the sets are binary Cartesian products. Finally, we show that the class of conjunctive queries with the Cartesian-closed increment property is decidable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.