Abstract

We have theoretically investigated wave propagation in nonreciprocal photonic crystals (PC), which break simultaneously space-inversion and time-reversal symmetries. We identify a remarkable set of properties that are consequences of simply imposing the two symmetry constraints (independent of material choices, dimensionality, etc.). The model material system that we have investigated is a 1D periodic, lossless dielectric helical medium with magnetooptic activity for which we obtained both analytic and numerical solutions of the dispersion relations. We show that nonreciprocal PC display indirect photonic band gaps (band edges are not aligned in k-space, by analogy with the electronic case) even in the 1D case. Furthermore, we find that these PC support backward wave eigenmodes (opposite group and phase velocities). By analyzing the isofrequency contour diagrams, we show that it is also possible to obtain negative refraction at the interface between air and the photonic crystal, that nonlinearities of the photonic bands allow for superprism effects which differ from the known case by being unidirectional (i.e. not present if the light path is reversed), and that the propagation direction of light waves inside the nonreciprocal PC can be laterally deflected by perpendicular magnetic fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.