Abstract

We propose a scheme to achieve controllable nonreciprocal behavior in asymmetric graphene metasurfaces composed of a continuous graphene sheet and a poly crystalline silicon slab with periodic grooves of varying depths on each side. The proposed structure exhibits completely asymmetric reflection in opposite directions in the near-infrared range, which is attributed to the pronounced structural asymmetry and its accompanying nonlinear effects. The obtained nonreciprocal reflection ratio, reaching an impressive value of 21.27 dB, combined with a minimal insertion loss of just -0.76 dB, highlights the remarkable level of nonreciprocal efficiency achieved by this design compared to others in its category. More importantly, the proposed design can achieve dynamic tunability by controlling the incident field intensity and the graphene Fermi level. Our design highlights a potential means for creating miniaturized and integratable nonreciprocal optical components in reflection mode, which can promote the development of the integrated isolators, optical logic circuits, and bias-free nonreciprocal photonics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.