Abstract

Timebase distortion causes nonlinear distortion of waveforms measured by sampling instruments. When such instruments are used to measure the RMS amplitude of the sampled waveforms, such distortions result in errors in the measured RMS values. This paper looks at the nature of the errors that result from nonrandom quantization errors in an instrument timebase circuit. Simulations and measurements on a sampling voltmeter show that the errors in measured RMS amplitude have a nonnormal probability distribution, such that the probability of large errors is much greater than would be expected from the usual quantization noise model. A novel timebase compensation method is proposed which makes the measured RMS errors normally distributed and reduces their standard deviation by a factor of 25. This compensation method was applied to a sampling voltmeter and the improved accuracy was realized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.