Abstract
A nonradioactive receptor binding assay for ciliary neurotrophic factor (CNTF) is described. The assay is based on the interaction between biotinylated human CNTF, soluble gp130, and soluble myc-tagged CNTF receptor captured on a microtiter plate via an antibody against the myc epitope tag. Bound cytokine is revealed by alkaline phosphatase-conjugated avidin. Purified human and rat CNTF competed with biotinylated CNTF for receptor binding, with IC 50 values of 29 and 2 nM, respectively. Since the higher affinity of rat vs human CNTF has been previously shown to be conferred by the arginine residue at position 63 of the rat protein, we also tested a human CNTF mutant carrying a Q63R substitution. Secreted forms of wild-type and mutant CNTF were expressed in Escherichia coli, and the amount of cytokines in periplasmic extracts was determined by quantitative Western blotting analysis. The human CNTF mutant (Q63R, N137S) was found to compete with biotinylated CNTF for binding to soluble CNTF receptor with an eightfold higher apparent affinity than wild-type human CNTF. The present method thus faithfully reproduces the relative activities of CNTF analogs determined in other assay systems. The possibility of assaying cytokines in crude bacterial extracts makes the new technique particularly suitable for rapidly determining the receptor binding potencies of genetically engineered CNTF variants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.