Abstract
One of the main advantages of nanowires for functional applications is their high perfection, which results from surface image forces that act on line defects such as dislocations, rendering them unstable and driving them out of the crystal. Here we show that there is a class of step facets that are stable in nanowires, with no long-range strain field or dislocation character. In zinc-blende semiconductors, they take the form of Σ3 (112) facets with heights constrained to be a multiple of three {111} monolayers. Density functional theory calculations show that they act as nonradiative recombination centers and have deleterious effects on nanowire properties. We present experimental observations of these defects on twin boundaries and twins that terminate inside GaAsP nanowires and find that they are indeed always multiples of three monolayers in height. Strategies to use the three-monolayer rule during growth to prevent their formation are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.