Abstract

Nonradiative fluorescence resonance energy transfer (FRET) between lead sulfide quantum dots (QDs) of two different sizes embedded in porous matrix is observed by a fluorescence spectroscopy. Analysis of decays of photoluminescence from QD mixture shows that energy transfer in studied systems is determined by static quenching, specific for direct contact between QD-donor and QD-acceptor in the QDs close-packed ensembles. From steady-state spectral analysis it was found that efficiency of energy transfer depends on the molar ratio QD-donor/QD-acceptor and energy transfer from the donor to the acceptor passes by several channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call