Abstract

Organic light-emitting diodes (OLEDs) are attractive for display applications because of their high brightness, low driving voltage, and tunable color. Their operating lifetimes, hundreds or thousands of hours, are sufficient for only a limited range of applications. The luminance efficiency decreases gradually as the device is operated (electrically aged), for reasons that are poorly understood. A prototypical OLED has the structure anode|HTL|ETL|cathode, where the HTL and ETL are hole- and electron-transporting layers, and the recombination and emission occur at or near the HTL|ETL interface. We find that the decreasing luminance efficiency is linearly correlated with an accumulation of immobile positive charge at the HTL|ETL interface, and the magnitude of the charge is comparable to the total charge at that interface when an unaged device is operated. A natural explanation of the connection between the two phenomena is that electrical aging either generates hole traps (and trapped holes) or drives metal ions into the device, and that either species act as nonradiative recombination centers. To estimate the accumulating immobile charge and determine its location, we use a variant of a recently introduced capacitance versus voltage technique. In the prototypical OLEDs described here, the HTL is a ca. 1000 Å layer of NPB, and the ETL is a 300−1800 Å layer of Alq3. A device with an additional “emission layer” (EML) of an anthracene derivative between the HTL and ETL, in which the electroluminescence spectrum is characteristic of the EML, behaved similarly. We surmise that the phenomena reported here may be common to a wider variety of OLED structures and compositions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.