Abstract

The processes of nonradiative deactivation of electronic excitation energy in cyanine dyes determine their quantum yield. Because of that, the study of the influence of cyanines binding to DNA on these processes can provide information on the causes leading to the cyanines fluorescence intensity enhancement in the presence of DNA. In the presented paper, the activation energies of nonradiative degradation of electronic excitation, quantum yields and rate constants of nonradiative transitions of several cyanines in free state and in the presence of DNA were established and compared. The mechanisms of nonradiative deactivation of dye excitation energy were discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.