Abstract
We introduce a minimal model for a two-dimensional polar flock with nonquenched rotators and show that the rotators make the usual macroscopic long-range order of the flock more robust than the clean system. The rotators memorize the flock-information which helps in establishing the robustness. Moreover, the memory of the rotators assists in probing the moving flock. We also formulate a hydrodynamic framework for the microscopic model that makes our study comprehensive. Using linearized hydrodynamics, it is shown that the presence of such nonquenched heterogeneities increases the sound speeds of the flock. The enhanced sound speeds lead to faster convection of information and consequently the robust ordering in the system. We argue that similar nonquenched heterogeneities may be useful in monitoring and controlling large crowds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.