Abstract

In this paper, anisotropic strain rate potentials based on linear transformations of the plastic strain rate tensor were reviewed in general terms. This type of constitutive models is suitable for application in forming simulations, particularly for finite element analysis and design codes based on rigid plasticity. Convex formulations were proposed to describe the anisotropic behavior of materials for a full 3-D plastic strain rate state (5 independent components for incompressible plasticity). The 4th order tensors containing the plastic anisotropy coefficients for orthotropic symmetry were specified. The method recommended for the determination of the coefficients using experimental mechanical data for sheet materials was discussed. The formulations were shown to be suitable for the constitutive modeling of FCC and BCC cubic materials. Moreover, these proposed strain rate potentials, called Srp2004-18p and Srp2006-18p, led to a description of plastic anisotropy, which was similar to that provided by a generalized stress potential proposed recently, Yld2004-18p. This suggests that these strain rate potentials are pseudo-conjugate of Yld2004-18.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.