Abstract

Chemical defense against herbivores is of utmost importance for plants. Primary and secondary metabolites, including non-protein amino acids, have been implicated in plant defense against insect pests. High levels of non-protein amino acids have been identified in certain plant families, including legumes and grasses, where they have been associated with resistance to insect herbivory. Non-protein amino acids can have direct toxic effects via several mechanisms, including misincorporation into proteins, obstruction of primary metabolism, and mimicking and interfering with insect neurological processes. Additionally, certain non-protein amino acids allow nitrogen to be stored in a form that is metabolically inaccessible to herbivores and, in some cases, may act as signals for further plant defense responses. Specialized insect herbivores often possess specific mechanisms to avoid or detoxify non-protein amino acids from their host plants. Although hundreds of non-protein amino acids have been found in nature, biosynthetic pathways and defensive functions have been elucidated in only a few cases. Next-generation sequencing technologies and the development of additional plant and insect model species will facilitate further research on the production of non-protein amino acids, a widespread but relatively uninvestigated plant defense mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.