Abstract
The problem of nonprehensile manipulation of a stick in three-dimensional space using intermittent impulsive forces is considered. The objective is to juggle the stick between a sequence of configurations that are rotationally symmetric about the vertical axis. The dynamics of the stick is described by five generalized coordinates and three control inputs. Between two consecutive configurations where impulsive inputs are applied, the dynamics is conveniently represented by a Poincaré map in the reference frame of the juggler. Stabilization of the orbit associated with a desired juggling motion is accomplished by stabilizing a fixed point on the Poincaré map. The Impulse Controlled Poincaré Map approach is used to stabilize the orbit, and numerical simulations are used to demonstrate convergence to the desired juggling motion from an arbitrary initial configuration. In the limiting case, where consecutive rotationally symmetric configurations are chosen arbitrarily close, it is shown that the dynamics reduces to that of steady precession of the stick on a hoop.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.