Abstract

The development of a suitable catalytic system for methane pyrolysis reactions requires a detailed investigation of the activation energy of C-H bonds on catalysts, as well as their stability against sintering and coke formation. In this work, both single-metal Ni atoms and small clusters of Ni atoms deposited on titanium nitride (TiN) plasmonic nanoparticles were characterized for the C-H bond activation of a methane pyrolysis reaction using ab initio spin-polarized density functional theory (DFT) calculations. The present work shows the complete reaction pathway, including energy barriers for C-H bond activation and dehydrogenated fragments, during the methane pyrolysis reaction on catalytic systems. Interestingly, the C-H bond activation barriers were low for both Ni single-atom and Ni-clusters, showing the energy barriers of ~1.10 eV and ~0.88 eV, respectively. Additionally, single-atom Ni-TiN showed weaker binding to adsorbates, and a net endothermic reaction pathway indicated that the single-atom Ni-TiN was expected to resist coke formation on its surface. However, these Ni single-atom catalysts can sinter, aggregate into a small cluster, and form a coke layer from the highly exothermic reaction pathway that the cluster takes despite the facile reaction pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.