Abstract

AbstractTremendous demands for renewable hydrogen generated from water splitting have stimulated intensive research on developing earth‐abundant, non‐noble, and versatile metal catalysts toward the hydrogen evolution reactions (HER). Here, self‐supported Cu‐Ni‐Al hybrid electrodes that are composed of electroactive Al7Cu4Ni@Cu4Ni core/shell nanocrystals seamlessly integrated in self‐supported 3D bimodal nanoporous Cu skeleton (Bi‐NP Cu/Al7Cu4Ni@Cu4Ni) as robust HER electrocatalysts in alkaline electrolyte are reported. As a result of the proper architecture, in which the Bi‐NP Cu skeleton not only facilitates both electron and electrolyte transports but also provides high specific surface areas to fully use high electrocatalytic activity of Al7Cu4Ni@Cu4Ni core/shell nanocrystals, the Bi‐NP Cu/Al7Cu4Ni@Cu4Ni hybrid catalysts exhibit a low onset overpotential of 60 mV and a small Tafel slope of 110 mV dec−1, enabling the catalytic current density of 10 mA cm−2 at a low overpotential of 139 mV. The highly stable electrochemical performance makes them promising candidates as cathode catalysts in alkaline‐based devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.