Abstract

The use of molecular crystalline materials for the separation and purification of chemical raw materials, particularly polar compounds with similar physical and chemical properties, represents an ongoing challenge. This is particularly true for volatile feedstocks that form binary azeotropes. Here we report a new cavity-extended version of calix[4]pyrrole (C4P) that readily forms nonporous adaptive crystals (NACs). These C4P-based NACs allow pyridine to be separated from toluene/pyridine mixtures with nearly 100% purity, as well as the removal of 1,4-dioxane from 1,4-dioxane/water mixtures with high adsorption capacity. Removal of the polar guest (pyridine or 1,4-dioxane) from the guest-loaded NACs by heating under vacuum produces the guest-free crystalline form. In the case of both guests, the C4P material could be reused as demonstrated through 10 uptake and release cycles without apparent performance loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.