Abstract
Recent remarkable developments on nonfullerene solar cells have reached a photoelectric conversion efficiency (PCE) of 18% by tuning the band energy levels in small molecular acceptors. In this regard, understanding the impact of small donor molecules on nonpolymer solar cells is essential. Here, we systematically investigated mechanisms of solar cell performance using diketopyrrolopyrrole (DPP)-tetrabenzoporphyrin (BP) conjugates of C4-DPP-H2BP and C4-DPP-ZnBP, where C4 represents the butyl group substituted at the DPP unit as small p-type molecules, while an acceptor of [6,6]-phenyl-C61-buthylic acid methyl ester is employed. We clarified the microscopic origins of the photocarrier caused by phonon-assisted one-dimensional (1D) electron-hole dissociations at the donor-acceptor interface. Using a time-resolved electron paramagnetic resonance, we have characterized controlled charge-recombination by manipulating disorders in π-π donor stacking. This ensures carrier transport through stacking molecular conformations to suppress nonradiative voltage loss capturing specific interfacial radical pairs separated by 1.8 nm in bulk-heterojunction solar cells. We show that, while disordered lattice motions by the π-π stackings via zinc ligation are essential to enhance the entropy for charge dissociations at the interface, too much ordered crystallinity causes the backscattering phonon to reduce the open-circuit voltage by geminate charge-recombination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.