Abstract
This article is devoted to the partial difference quad-graph equations that can be represented in the form $\varphi (u(i+1,j),u(i+1,j+1))=\psi (u(i,j),u(i,j+1))$, where the map $(w,z) \rightarrow (\varphi(w,z),\psi(w,z))$ is injective. The transformation $v(i,j)=\varphi (u(i,j),u(i,j+1))$ relates any of such equations to a quad-graph equation. It is proved that this transformation maps Darboux integrable equations of the above form into Darboux integrable equations again and decreases the orders of the transformed integrals by one in the $j$-direction. As an application of this fact, the Darboux integrable equations possessing integrals of the second order in the $j$-direction are described under an additional assumption. The transformation also maps symmetries of the original equations into symmetries of the transformed equations (i.e. preserves the integrability in the sense of the symmetry approach) and acts as a difference substitution for symmetries of a special form. The latter fact allows us to derive necessary conditions of Darboux integrability for the equations defined in the first sentence of the abstract.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Symmetry, Integrability and Geometry: Methods and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.