Abstract

This paper presents a general approach for the two-dimensional elastic problem of a crack lying along an elliptical interface seperating two dissimilar anisotropic materials. The analysis is based upon the use of the Eshelby–Stroh formalism of anisotropic elasticity theory and a special conformal mapping technique devised by Lekhniskii. The resulting elastic fields are fully described by a pair of function vectors whose components are holomorphic functions. These function vectors define the two-phase potentials of the bi-material. The associated expressions are universal in the sense of being applicable to any applied load. As in the case of a planar interface crack, the crack tip stress field is free of oscillation if the bimaterial matrix H is real. The general results are applied to specific examples and explicit forms of solutions are obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.