Abstract

An unmagnetized dusty plasma consisting of static negatively charged dust fluid, nonthermal distributed electrons, and adiabatic ion fluid has been considered. Basic properties of the dust-ion-acoustic shock waves have been made by the reductive perturbation method to derive the Burgers’ equation for nonplanar geometry. The solution of modified Burgers’ equation in nonplanar geometry is numerically analyzed and it has been found that, the nonplanar geometry effects have a very vital role in the development of shock waves. We also discovered that; the inclusion of the nonthermal electron distribution significantly modifies the shock wave profile. The change of the DIASW structure due to the effect of ion temperature and dust density is studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.